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DYNAMIC ANALYSIS OF AN INERTIAL FOUNDATION
MODEL
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Abstract—The three-parameter weightless foundation model proposed by Kerr [29] which consists of two elastic
spring layers interconnected by an elastic shear layer, is generalised herein to include the effect of foundation
inertia. The steady-state motion of a rigid beam resting on the surface of a two-dimensional model is analysed
considering permanent contact and a distributed mass of the shear layer. A large set of patterns are given for the
contact pressure distribution under the beam, pointing out its variation with the exciting frequency in both
phase and magnitude. Qualitative agreement with the available experimental data is found for a limit case.

NOTATION

C,,C,,Cy,C,  integration constants in equations (10) and (11)
F, amplitude of harmonic force acting on beam, Fig. 1
G shear layer constant
Jy mass moment of inertia of the beam
M, am&litude of harmonic couple acting on beam (anti-symmetric case)
j =J-1
ki, k, upper and lower spring layer constants, respectively
! half-length of the beam
m mass per unit length of the shear layer
n dimensionless foundation parameter, equation (9)
q amplitude of the external pressure applied to the foundation surface
t time
Uy, s, Vis V2 deflections of the foundation surface and shear layer, respectively
o amplitude of the vertical displacement of the beam
v¥ static deflection of beam on Winkler foundation (symmetric case)
x distance from origin
o notation according to Table 1
[ — —pB, notation according to equation (9).
Y2 dimensionless foundation parameter, equation (9)
Y. 9,9 abbreviations according to equations (19), (22), (29), respectively
£ dimensionless co-ordinate, equation (9)
v, ¥ mass ratios, according to equations (9) and (46)
Po amplitude of rotation angle of the beam (anti-symmetric case)

* static rotation angle of the beam on Winkler foundation
u mass of the beam
w forcing frequency
Q,Q dimensionless forcing frequencies, equations (9) and (46).

1. INTRODUCTION

THE vibration of a rigid body resting on a deformable medium is the basic problem of
foundation dynamics. Generally, the supporting medium is replaced by a foundation model
and some assumptions are made concerning the contact conditions.
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The most used model for the theoretical investigation of the footing vibrations is the
elastic isotropic continuum, for which linear stress—strain relations are assumed valid.
The mixed boundary values problem of the oscillations of a rigid body on an infinite
half-space was formulated as a set of dual integral equations, corresponding to the uniform
displacement conditions under the rigid body and zero stress condition on the surface of
the half-space outside the body [1]. For uncoupled modes of vibration and smooth con-
tact between body and foundation accurate solutions have been proposed by Awojobi
and Grootenhuis [2], Robertson [3], Karasudhi et al. [4]. A survey of the available
literature can be found in a paper by Gladwell [5]. Approximate solutions had been
published earlier by Reissner [6], Sung [7] and Bycroft [8] by assuming a certain dis-
tribution of stresses over the contact area or by averaging the computed displacements
of the contact area. Of real interest is Lysmer’s numerical “‘ring solution” [9] based on
Ref. [6].

The vertical vibrations of a rigid body on an elastic stratum resting on a rigid base have
been investigated by Arnold et al. [10], Bycroft [8] and Warburton [11]. The dynamic
displacement was calculated (using the solution for the half-space) as a weighted average
of the values over the whole loaded area. Bycroft’s results suggest the possibility of using a
model consisting of a set of laterally constrained rods, free at the top, fixed at the base, the
length of which equals the depth of stratum (Korenev [12], Viksne [13], Nikolaenko [14]).
A new approach to the problem was given by Whitman [15, 16] pointing out the usefulness
of “lumped”’ representation in practical calculations.

In a recent paper by Nowak [17] the amplitudes of the vertical vibrations of massive
footings are found to be considerably larger than the values predicted by the half-space
theory, so that it is concluded that the soil behaves rather like an elastic stratum with
reflections of elastic waves. Adding the nonlinearity, the anisotropy and the general
rheological properties of the supporting media it is obvious that the model of the elastic
continuum is no cure-all (Whitman [18]). The same can be said for the completely dis-
continuous and anisotropic Winkler model [19], very often used in engineering practice,
consisting of a system of massless linear independent springs which offer resistance in the
direction of their axes only.

Itis generallyaccepted that, owingto the extremely various physical nature offoundation
materials, a single model cannot describe the mechanical behaviour of all types of subgrade.
Starting from the isotropic continuum and introducing simplifying assumptions with
respect to the displacements and the stresses (Vlasov and Leont’ev [20], Reissner [21],
Muravskii [22]) or improving Winkler’s model by adding shear interactions among the
elastic elements (Filonenko-Borodich [23], Pasternak [24], Hetényi [25]) numerous
mathematical and mechanical models have been proposed to describe the response of a
deformabile layer of finite depth at the contact surface. These continuous foundation models
are very suitable for nonlinear and/or viscoelastic problems (see Kerr [26]) and also for
more complicated problems involving deformable structures supported by deformable
layers [27]. The inertial models derived from the ‘“discrete-element models” formed
following the second development tendency are useful in problems where the subgrade
inertia cannot be neglected [28]. The development of this kind of foundation model is
necessary in order tofill the existing gap between the elastic continuum model and Winkler’s
model. The approach permits to solve the correct mixed boundary values problem, starting
from a given ‘““constitutive equation’ {connecting the applied normal pressure and the
foundation surface displacements) and a number of specified boundary conditions.
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Herein, a two-dimensional Kerr-type [29] inertial model is examined, consisting of
two massless spring layers interconnected by an incompressible shear layer (which deforms
by transverse shear only) for which a distributed mass is considered (Fig. 1). It is a four-
parameter model, defined by one inertial and three elastic parameters. The steady-state

[ L
M-+ q{x,t) dx
. A DY b
Rigid beam N I X K,
Upper -
spring Iuyer{ k.% % %O% % % }r *V. Sk (yy,)dx
3, 3?
Shear Layerm'G T ma_:id" 1 Tl!}d‘
Lower Y, N oy
spring layer Ky 2%

Rigid base

F1G. 1. Rigid beam on an interial foundation with three elastic parameters.

response of a finite rigid béam resting on such a foundation is studied in the assumption of a
permanent and smooth contact between beam and foundation. Owing to the anisotropy
of the model-—which permits only vertical deflections—only vertical translation and
rocking can be considered. In the paper only uncoupled modes are considered. Neglect of
longitudinal inertia limits the applicability of the proposed model which could however be
useful in the case of studded or ribbed carpets used in vibration isolation. A consideration
of damping can be achieved by using complex foundation moduli. The dynamic analysis of
the corresponding three-dimensional model supporting a rigid circular disk and the
experimental determination of foundation constants are the subject of another paper.

2. SYMMETRIC VIBRATIONS

2.1 Governing equations
The dynamic equilibrium conditions of the upper spring layer and of the inertial shear

layer (Fig. 1) can be written as

2%y, 0%y,

ox? T

q(x,t) = ky(y,—y2) = kyy,— G (1)
where k, and k, are the upper and inner spring layer constants, respectively, G is the shear
layer constant, m is the uniformly distributed mass (per unit length) of the shear layer,
g(x, t)is the normal pressure at the foundation surface, y(x, t) are vertical deflections to which
subscripts 1 and 2 are added for the foundation surface and the shear layer, respectively.
Elimination of y, in (1) yields the relationship between the applied pressure and the

foundation surface deflection:
( kz) G &*q md*q y, %y,

|42 )
1 o "o

ky

M S
K, ox Tk, o = ke C

(la)

which for m = 0 reduces to the equation derived by Kerr [26, 29] (similar equations are
presented in [20] and [21]).
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Consider a rigid uniform beam, of length 2/ and mass yu, supported by such a foundation
and acted upon in the middle by a harmonic force F = F, ¢/, of constant amplitude F,
and of exciting frequency w (Fig. 1). Designating the foundation displacements inside and
outside the beam by subscripts i and e, respectively, the mixed boundary conditions at the
foundation surface are: (1) for [x| < I, y{x, 1) = y,{t): Q) for |x| > [, gq(x,t) = 0, y, (x, 1) =
V2.(x, 1}, so that equation (1) yields

for x| < I,
3y 0%y,
kiyi= (ki +ky)y,—G 6x22 +m 6t22 ; (2)
for |x| > |,
yre 0%V,
0 = kyy5,—G 6x§ e (3)
For symmetric vibrations, the dynamic equilibrium of the beam requires
! %y
2 f ki(yii=ya2) dx+p at’-l =F. (4)
0
Trying solutions of the form
yl(xs [) = vl(x) ejwt’ )’z(X, t) = UZ(X) ejwt’ (5)
the equations (2)+4) can be written
d?v,, 2 2
dﬁz "Vz(n"‘ﬁ)vzi = —y3h0y,;, for &} <1, (6)
d?v,,
iz " 13Pvae =0, for [£]> 1. (7)
1
(2kll—uw2)v“—2kllf v,{&) dé = F, for €] < 1, (8)
0
in which the following notations are used
x k, 12\ 12 k,
é - 7’ Y2 = (7 s n= k—za
1 2k, 1\ 12 ©)
H w 2
=1--0Q? = Q=— ===
--ﬁ 1 4 2im Wq @o ( U )

where w, can berecognised as being the natural frequency of the beam resting on a Winkler-
type foundation of parameter k,.

2.2 Solutions for displacements
The general solutions of the equations (6) and (7) can be written in the form

n
n+p
DZe(é) = C3ea§ + C4eVa§’ (1 1)

v,{¢) = C e+ Cre™ 7+ Uiis (10)
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where y and « are defined by expressions whose form depends on the sign of f and (n+ §),
as shown in Table 1.

TasLE |
Frequency Analytical Nota-
Case range Condition y o expression of tion
vo Ud&) v2d8) G&)
1 0<Q<y'? o O0<B<pBtn Yo/ (4 B) )’z\/,ﬂ (13) (15 (14) (39)
2y < QW B<0<Bin o) Jngf 18 QO Q) 40 = -f
3 [W+m]'"? <Q B<B+n<0 jinJB-n jnJB (23) 24 (25 @) y=j7

Therefore, there are three ranges of exciting frequencies for which the dynamic re-
sponse will take different shapes. The first boundary Q, = /% corresponds to w, =
(k,/m)'? which is the resonant frequency of the elastically supported inertial shear layer,
for zero external pressurecat the foundation surface. The second boundary Q, = [y(1 +n)]*/?
corresponds to w, = [(k, +k,)/m]'/? which is the resonant frequency of the shear layer for
zero deflections at the (fixed) foundation surface.

Because of the symmetry with respect to & = 0, the problem is studied only for & > 0.
The integration constants in equations (10) and (11) are to be determined from the com-
patibility and boundary conditions for the shear layer:

- dv,,
badeer = adeers | 2| =0,
[020)e=1 = [v2ile= |:dé:|c=o

dee] I:d'-’zi:l .
—= = Useles o = finite.
[dﬁ A I I

The expressions of the displacements can be derived using the equations (8) and (10)12).
Case 1,0 < Q < /2. The vertical displacement of the rigid beam, v, = v,;, is given by

Vo _ 1
U;'; oon B+ n _QZ. (13)
n+p n+f + 1
v B tanh y
The deflections of the shear layer, for 0 < £ < 1, are
n cosh
02d8) = vor 5l 1- | (149
cosh y+\/ B )sinhy

The foundation surface deflections outside the beam (¢ > 1) are given by

’ n sinh y
®n+ B sinh y+./(B/n+ ) cosh y

01(8) = 1,8) =

e~ W BM+BE-1) (15)
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where

(16)

oo 0
T ok,
is the static displacement (zero frequency) of a rigid beam lying on a Winkler-type founda-
tion of parameter k,.

It can be seen that v, and v, (&) are real quantities. All displacements are in-phase with

the force, the foundation surface deflections having an exponential decay outside the beam.
At the ends of the beam (£ = 1), the foundation deflection has a discontinuity given by

B nin+f ]
1+./(B/n+ p)(1/tanh y) |’

Case 2, §''? < Q < [Y(1+n)]"2. By substitution of § = — f in the equations (13)15),
the ratio v,/v¥ can be written as

(17)

Av = 0, (1) —v,(1) = vy —1,(1) = U0|:]

1 L n—p
%: n? np tanhyl .ﬁ n—pB\{ np (18)
’ v(n—B)"(n—/?mz)tanhvﬂ/( p )(n—B*QZ)
in which
v =7/n—FB (19)

Herein v, is a complex amplitude, so that the vertical displacement of the beam is
out-of-phase with the disturbing force. Equation (15) becomes

A n 1
1) = 038 = "0~ B 1+j/(B/n— B)A1/tanhy)

e IV Bm=BE-1) (20)

describing a wave travelling outward the beam with a velocity

ol (G 1/2( k, )-1/2
= 2 1—
WBm=p \m mo?
where (G/m)'/? is the wave propagation velocity in the shear layer alone (unsupported).
Note that the velocity of these “‘shear waves’ decreases with increasing exciting frequency,
from the infinite value at Q, = y'"?[w, = (k,/m)}'/?] to the limit value (G/m)!/? at Q — o,

which is in contradiction with the usual experimental results.
Using the same substitution, equation (14) yields

_ n _ cosh y¢
vale) = von—B[l cosh y—j./(n— B/B) sinh y]' @D
Case 3, [Y(1+n)]*"? < Q. Denoting
7=72/B—n (22)
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the equations (18), (20) and (21) yield the following expressions for the amplitudes of the
beam displacement, the foundation surface deflections and the shear layer deflections
beneath the beam:

Y _ ta:w”\/(ﬁlgn)

= : , 23
v* nB_Q2 1 n? +_\/B—n nB_Qz) 23)
B-n " Jtang 7B-n Y\ B |\B-n
_n
16) = 128) = vy BB—" ] e IW@BIEmmE- D), (24)
1_1\/(ﬁ—n)tan)7
0a) = —vog =1 - ). s)
COS'}_)'FJ\/(T) Sil’l’}7

As for the previous case, the beam displacement is out-of-phase with the exciting force
and the foundation surface exhibits shear-type travelling waves, with the same expression
(depending upon the disturbing frequency) for the velocity as in the previous case.

The dynamic response of a rigid beam supported by a Pasternak-type inertial founda-
tion can be obtained as a limit case, by substituting n — oo (k; — o0) into the equations
(13) and (18) [28]. This yields:

for 0 < Q < Y12,

v 1
i 6
vk B B-aF (26)

for y? < Q,

Uop 1
Zopr _ _ ' X
o4~ Uy B-(B+0Y) 27)

For m = 0, § = 1 and equation (13) gives the beam response on a Kerr foundation
(non-inertial)

1
5 28)
* 1+ Z — 5 —Q?
n+1 [/ (n+1)+(1/tanh 9)]
where
$ = yafn+1l. (29)

By substitution of § = 1 in equation (26), or n — co in equation (28), the response of the
rigid beam on a Pasternak non-inertial foundation can be written as
U 1

ok () -0 .
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which, for G = 0(y, — o0} yields the beam response on a Winkler-type foundation

v 1
oo 1)
st

The above derived expressions were used for plotting the frequency-response curves
in Fig. 2, where the modulus of the vertical displacement of the beam '(v,/v¥) is presented
as a function of the dimensionless exciting frequency Q for five types of foundation models.

3

—2-3238

-

o] 2 3 4 4:25065 5
Q=¥

,J;

F1G. 2. Frequency-response curves for symmetrical vibrations of a beam on different foundation models.

It can be seen that the Kerr-type inertial foundation model (curve A) exhibits two resonant
frequencies. The first one takes place in the frequency range Q < y/? and gives rise to
boundless amplitudes (in the absence of damping); the second appears in the range
[¥(1+n)]'? < Q and is determined by the inertial shear layer. In this case, the energy
dissipation caused by wave propagation, usually referred to as ““geometrical damping”,
limits the resonant amplitudes even in the absence of internal damping.

Neglecting the shear interactions in the four-parameter model (G = 0), a Winkler type
inertial foundation [Fig. 3(a)] can be obtained, which, for the studied problem, leads to
the two-degrees-of-freedom lumped parameter system shown in Fig. 3(b). This corresponds
to Whitman’s representation [15, 16] for the so-called “soil amplification’” and ‘‘soil-
structure interaction”. Figure 4 shows that the beam (mass y) response in this system
(curve B) gives a good approximation for the response on a Kerr inertial foundation (curve
A).

In Fig. 5 frequency-response curves are plotted for damped forced vibrations, in the
limit case n — oo (a Pasternak-type inertial foundation) for y, = 1. A hysteretic damping is
assumed introducing in equation (26) complex foundation parameters

3 =ky1+jo),  G* = G(l1+jdg) (32)
instead of the real ones (with a rather common assumption 8, = é; = 0). This results in

Vop 1

or_ 33
v = (4007 1) = + D)8 33




Dynamic analysis of an inertial foundation model 1361

L L
F
= o o
k|
m
kg
TI77)77 77777777 7
(a)
F
M
2Lk,
2Lm
20k,

(b)

F1G. 3. Two-degree-of-freedom model for an inertial foundation without shear interactions.
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F1G. 4. Displacement amplitude vs. frequency relations for the models in Figs. 1 and 3.

where
Qp=w%, wp=(k—,;)m, (34)
N AR S 69)
Y= (AT QR (A2 — Q3+ 30} (36)

7,402
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FI1G. 5. Frequency-response curves for a beam on an inertial foundation with hysteretic damping.

and
A% = 1+82%

(37)

The peak amplitudes decrease with the mass ratio i as shown by broken lines, the

slope of which are smaller than for the case of viscous damping [33].

2.4 Dynamic contact-pressure distribution

If the beam response can be studied with good results on a two-degree-of-freedom
lumped parameter system, conversely, the dynamic pressure distribution and its variation

with the forcing frequency can be studied only on a continuous foundation model.
For a steady-state response, q(¢, t) = g(&) e, where

q&) = ky(vo—v,))

which, in connection with equations (13), (14) and (16), yields:
Case 1, 0 < Q < Y2

q(é) B[coshy+\/(n+ﬁ) 51nhy:|+ncoshyé

21 (ﬂ n+[3 )[coshy+\/( )sinhy]+$sinhy

(38)

(39)
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Case2, Y'* < Q < [Y(1+n)]Y2

@) n cosh & — B cosh y +j/[B(n— )] sinh y “0)
Fo _Esinh - /?-kn;BQ2 cosh y+j E+n_BQ2 \/n—B sinh |
5 oimh - y+J — 7 y
Case 3, [Y(1+n)]'"* < Q.
Q) n cos 3¢ — B cos 7 —j/[B(B—n)] sin 1)
Fo _Esin 7 — B—BQZ cos 7 —j B—B—nQZ B—n sin ;
5 5sind . §—j - 3 7

Substitution of § = 1 and Q = 0into equation (39) gives the contact pressure distribu-
tion under a statically and symmetrically loaded rigid beam, resting on a Kerr-type founda-
tion [29]. Figures 6-8 point out the frequency dependence of the pressure distribution
under the beam.

In Case 1, the expression (39) defines a real quantity. The contact pressure is in-phase
with the perturbation, the distribution is relatively constant in the central part of the beam
and increases like “cosh” to a finite value at the edges. The peaks are more pronounced
for exciting frequencies in the neighbourhood of the bouncing frequency where the usual
change of sign takes place (Fig. 6).

In Case 2, the expression (40) defines a complex quantity ; the contact pressure can be
considered as havingtwo components : g,—in-phase with the exciting forceand approaching

| 11"
| |w=10 ‘4’=‘4_ -
n=3 n=3
IS inmnnie q
— -i0
| / -8
Q:09 .
-4
Q:1-0 .
10 /1,
L5 IS
— o]
0 ]
A 05 05 N
V| N 2
075
7 4
- |
N \le

10 08 06 0402 O 02040608 10
13

F1G. 6. Contact pressure distribution beneath rigid beam for symmetrical vibrations (Q < /).
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FiG. 7. Contact pressure distribution beneath rigid beam for symmetrical vibrations (2 < Q <

(L +m)]'2),

a parabolic distribution with increasing Q, §—in quadrature with the exciting force and
having a rather “rigid body”-type variation [Fig. 7(a)]. The distribution varies along the
beam in both phase and magnitude. In Fig. 7(b) the modulus g/(F,/2]) is plotted vs. &
for different values of the dimensionless exciting frequency Q. In this range of frequencies
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FiG. 8. Contact pressure distribution beneath rigid beam for symmetrical vibrations ( > [¥(1 +n)]"/?).



Dynamic analysis of an inertial foundation model 1365

the contact pressure is relatively small (cf. Figs. 6 and 8) and so is the beam response (see
Fig. 2).

In Case 3, for Q > [(1+n)]'/?, the contact pressure is still out-of-phase with the
perturbation, but the distribution has a “‘cosine”’-type variation along the beam, with
smaller and mainly negative components beyond the second resonant frequency and
approaching a uniform distribution with increasing Q (Fig. 8).

3. ANTI-SYMMETRICAL VIBRATIONS

3.1 Equations of motion

The problem can be treated in a very similar manner as for the symmetric case. Consider
a rigid uniform beam of length 2I, supported by a Kerr-type inertial foundation and
acted upon in the middle by a harmonic couple M = M ,e/* of constant amplitude.

The governing equations (2) and (3), and the upper boundary condition for |x| > [ are
still valid. The displacement condition beneath beam (x| < I) can be written y,(x, t) =
@(t)- x, where the rotation angle ¢ is relatively small. Equation (4) has to be replaced by
the equilibrium equation with respect to the beam midpoint

{ d2
2f qx,t)-x-dx+J,——5 =M, (42)
0 dt
where J, is the mass moment of inertia of the beam.
With solutions of the form (5) and putting (1) = @,e’*, the following set of equations
of motion can be written:

d?v,,
a2 1A+ Boa = —vinlgot, <1, (@3
d?v,,
gz 1B =0, €1> 1, (44)
2k, P , , (! .
L [ RN T g1 @)
0
where
Q2 3J, - _ 2k, 13\ 112

3.2 Solutions for displacements

The general solutions of the equations (43) and (44) are given by (10) and (11), in which
vy; = lpo. The integration constants can be determined using the following conditions
for the shear layer:

[UZe]§=1 = [UZi]§=17 [%.’];:o = 0,

d d (47)
V2e _ | 9uy; .
[ d¢ :L=1 B |:d§ ]§=1’ [V2e)¢= o = finite.
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By using the equations (10), (11), (45) and (47), the beam and foundation displacements
are obtained as follows:

Case 1,0 < Q < V2. The beam rotation

Do 1

i . 3n[y \/(ﬁﬁﬁ)-i—lil(y—tanh 7)
B+ -2
ntp )’3[\/(’1’%[3) tanhy+1}

where @* = 3M/2k,I? is the rotation angle for the beam statically loaded by the couple
M, and supported by a Winkler foundation of parameter k.

The shear layer deflection, for [&] < 1:
" [v\/(mnfﬁ) + l:l sinh y¢
0248 = @yl &— (49)

n+p , By '
}[\/(n—#ﬂ) smh)+coshy}

The foundation free surface deflections

ltanh y—1
vl = 0,.(8) = +ﬂ e WM BIE= 1) (50)
\/( ) tanhy+1
Case 2, ' < Q < [J(1+n)"2.
)'+j",'\/(‘B )tanhy
Po _ n—p -
o ok o B,
y(n—p) n—p)’

+j[3n y—tanhy)\/( B )
y(n—p)
I:1+jy\/(~»£t) sinh y&
n b (52

0248) = Pol =38~ - ,
n=p ycoshy+jy\/( b )sinhy

1
—tanh y—1
) " o
11d8) = 1248 = Pol—7 : eI Pin=DE= 1), (53)

b 1+j\/(%) tanh y
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Case 3, [¥(1+n))*? < Q.

. — \/(B )tany ~j (54)
- (Bn—ﬁn_ﬁz)/(ﬁf}-n) tan7+ vz(B_—tanI; Y)/('fﬁ)

B 5 i"(v_—taf_w_)}
J[ Q) 7B —n)

AR .

s

n tany—7y

Ule(é) = UZe(f) = B—‘
7+ j7 tan ’\/
ﬁ_

For Q < !/ the displacements are in-phase with the disturbing couple. For Q > /2
the beam rotation is out-of-phase with the couple and the foundation free surface exhibits
shear-type travelling waves having the same frequency-dependent velocity as in the
symmetric case. In Fig. 9 the modulus |¢,/@X| is plotted against the dimensionless frequency
Q, for n =3,y = 4and y, = 5. The system has two resonant frequencies, one—in the
range Q < /2, of infinite (rotation) amplitude, the other—of finite amplitude and less
extent, due to the energy radiation, at relatively high exciting frequencies Q > [{(1+ n)]'/2.

e IWBIB-mE-1) (56)

3 v
I 1
2 o
v =4
i ok n=3
Rl y2=5

\

0 ) 2 3a 5
Q-9
Wo

F1G. 9. Frequency-response curves for anti-symmetrical vibrations.
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Letting § = 1in the equation (48), the beam response on a non-inertial Kerr foundation
is obtained as

Po _ 1
S AT N RV BT (57)
n+1 $°[tanh §+ /(n+ 1

@

giving a good approximation for the low-frequency response of the studied system at low
values of the mass ratio y.

3.3 Contact-pressure distribution under the beam
By denoting M, = % L, where % has the dimensions of a force and L of a length,
the following expressions can be derived for the pressure distribution beneath the beam:

Case 1.
sinhy+ycoshy|BE+n|y L
! n+p

(©) j[ \/L

+ 1:| sinh yé}
. (58)

ae) _
Fy n+ﬁ ‘ L
j )'Z(ﬁ n )[ \/(”1‘:[;) sinh 1 Y+ cosh ) :|
%—311[”\/(L +1](y cosh y—sinh )
s n+ﬁ '
Case 2.
3TL}’2§(n sinh y¢ — By cosh )
_ +}[ny\/( B )smhyf 5ﬁy\/( B )smh }}
a.) = =5 . (59)
%}O |:3n(y cosh y —sinh y)— )y cosh y:l
+j|:3ny\/(£ (y cosh y —sinh 7) + B+n~—’%ﬁﬁ2)y3\/(n—f[—;) sinh y]
Case 3.
» ——? H éﬁ]& ksm 7+"V\/ ( BB ) sin vé] +J(¢By cos §—nsin yé)}
q? . (60)

? ( nn— )‘3\/(5 )smy—f—.’m(ycosy—smy)

+j|:3n()7 €os ¥ —sin ) — (ﬁ—;—nﬁz — B) 73 cos )7:|
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Substitution of f = 1 into equation (58) yields the normal interface pressure for a
beam on a non-inertial Kerr foundation:

3L_2[( P e s ) ( ? .

_ —5 —smhy+ycoshy E+n + 1) sinh $&

q® _ \/ Jnt1 o)
% I—ELIQ2 il smhA+‘cosh‘ +3n J—+1 ($ cosh $ —sinh 9)

31 \/ p+9coshp NS ?

which, for Q = 0, corresponds to the expression deduced by Kerr [29] for the static case.

For Q < /2, the contact pressure is in phase with the exciting couple. The frequency-
dependence of the pressure distribution is shown in Fig. 10, where the quantity [g(£)/%,/21]
is plotted against ¢ for n =3, ¢ =4, y, = 5 and (L/) = 0-6 (only for Q < §'/?). For
Q > 12, (&) is defined by a complex quantity which denotes a phase shift along beam
with respect to the exciting couple

£
0O__02 04 06 08 )0

— 13
| s 20
2 \\ 5.:0«4

3
=os\
4

\

\
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N’l:\ 6
¢ \
o 7 =
V=4 \
8 n=3
7,75 |
9L =06L

Fic. 10. Contact pressure distribution beneath beam for anti-symmetrical vibrations (Q < §1/2).

4. CONCLUSIONS

In this theoretical paper a Kerr-type inertial foundation model was developed in
order to approximate the dynamic response of a particular kind of vibration isolator
manufactured as a carpet with studs on both sides (although it can be also used for other
layered deformable supporting media). The analysis was conducted on the simplest two-
dimensional problem concerning the steady-state motion of an elastically supported rigid
beam. For viscoelastic materials, the springs could be replaced by viscoelastic elements as
has been shown by Achenbach and Sun [30] and Kerr [26].

Due to the presence of the shear layer, the beam response is influenced by the outside
part of the foundation. The upper spring layer gives a contact-pressure distribution with
neither concentrated reactions (as for the Pasternak model) nor infinite values (as for the
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elastic continuum). The consideration of shear layer inertia is somewhat arbitrary but
permits the description of surface wave propagation and variation of pressure distribution
with exciting frequency in both phase and magnitude along beam. That is, the proposed
model is the simplest one which describes dynamic pressure distributions similar to those
experimentally determined by Chae et al. [31] for a circular footing on soil (though the
static distribution is different). For application to other types of supporting media, the
model requires further improvements, especially concerning the reponse in the low-
frequency range.

Despite some shortcomings already shown in the paper, the proposed model offers a
compromise between mathematical simplicity and accurate representation (at least
qualitatively) of the dynamic response of an actual system. Considering only the limit case
of a Pasternak-type inertial foundation (n — o0), the resonant frequencies can be obtained
by equating the denominator of equation (26) to zero. Figure 11, in which the mass ratio
is plotted against a dimensionless resonant frequency w,.(m/k,)!/? seems to explain the
experimental results of Arnold et al. (Fig. 8(a) in [10]), the curves converging to the same
frequency w,, = (k,/m)'/? for Y = 0. In Fig. 12, the mass ratio y is plotted against a
resonant frequency factor w,.[/(G/m)'/?, similar to that generally used for the elastic
continuum model. Each curve represents a different value of v, (which is proportional to
the length of the beam). The curves are similar to those obtained by Warburton (Fig. 6 in
[11]) for an elastic stratum, using the isotropic continuum theory.

A large number of mathematical models, which vary in the degree of sophistication by
which they characterize the response of a deformable subgrade to a continuously supported
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FiG. 11. Mass ratio vs. dimensionless resonant frequency for symmetrical vibrations.
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F1G. 12. Mass ratio vs. resonant frequency factor for symmetrical vibrations.

structure, are now available. However, the analytical difficulties encountered in obtaining
technically useful solutions and the practical difficulties occurring in determining the
corresponding elastic and inertial parameters considerably limit their applicability. In
the case of the isotropic elastic half-space, the use of simplified spring-dashpot analogues
[32, 33] seems to give a practical solution of the problem. In the case of deformable layers,
the theoretical difficulties seem to be overcome by improving the inertial foundation
models [28] or by using the finite element technique [34].
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AGcTpakT—B uenbo yvera 3ddekra vuepuun dynaamenta, 0b6obliaercs 3aech TpexmapaMeTpuyeckas
6e3secoBas Moaens (yHaaMenTa, npeaioxeHHas Keppom /29/, xoTopas COCTOMT W3 ABYX YIPYTHX,
MPYXHHHBIX CITOEB, B3AUMOCBA3AHHBIX YIIPYTHM CPE3bIBAIOLLUM clloeM. Mccnenyercs ycTouMBOE ABHKEHHE
xecTkofl Ganku, Jexallel Ha MOBEPXHOCTH ABYXMEPHOH MOAENM, YYHTHBAA NOCTOSHHBIA KOHTAKT W
pacrpeneneHHyo Maccy cpesbiBaromero ciosi. Jaiorcs OonblUioe YWC/IO AMArpaMMOB, KacaroLLUXCS
pacnpeneneHys KOHTAKTHOIO JABIEHUS roia 0ankoil, yKa3blBalOLIMX €r0 U3IMEHEHWE B 3aBUCUMOCTH OT
YBEJTMYCHUS YacTOTh! (a3bl ¥ pa3Mepa. [lis rpaHUYHOrO Cily4as. YKa3blBa€TCA HA KaYeCTBEHHYHO CXO-
UMOCTb ¢ JOCTYIHbIMK 3KCITIEPUMEHTAbHBIMHA J1AHHbLIMYU.



